点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:【对话科学家】解开宇宙线起源之谜更进一步!
首页> 科普频道> 科学之子 > 正文

【对话科学家】解开宇宙线起源之谜更进一步!

来源:光明网2021-04-02 17:52

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  编者按:近日,中日合作西藏 ASγ实验观测到迄今为止最高能量的弥散伽马射线辐射,最高能量达 957 TeV, 接近 1PeV (1000万亿电子伏特);这些超高能伽马射线的方向并没有指向已知的低能段伽马射线源,而是弥漫分布在银盘(银河系在天空的投影)上这是国际上首次发现拍电子伏特宇宙线加速器(“PeVatron”)在银河系中广泛存在的证据。该结果被美国物理学会(APS)评论为研究高能宇宙线起源“世纪之谜”的里程碑。光明网记者就此采访了中科院高能物理所研究员黄晶,对什么是宇宙线?研究它的意义是什么?进行科普解读。  

  光明网:什么是宇宙线?

  黄晶:宇宙线亦称为宇宙射线,是来自外太空的带电高能次原子粒子,约有90%左右为质子,其他是电子、光子这些粒子。

【对话科学家】解开宇宙线起源之谜更进一步!

  光明网:为什么宇宙线踪迹难寻,不好定位来源?

  黄晶:我们知道银河系中到处都存在磁场,而宇宙线是带电粒子,宇宙线运动传播时经磁场偏转会改变原有的运动方向,到达地球时的方向已经失去原有的方向信息,这使得找寻加速源困难重重,即使是百余年后的今天,仍然是一个谜。

  光明网:现在科学家主要通过哪些可靠指标或者方法来追寻宇宙线的源头?

  黄晶:目前对于银河系宇宙线源头的追寻主要是通过伽马射线及中微子的观测来开展。

  光明网:研究宇宙线有哪些主要意义?

  黄晶:1912 发现了宇宙线,通过宇宙线观测研究进而发现了多种粒子,发展加速器科学,明白了核反应,核裂变,聚变等。由此可见,显然像宇宙线这样的基础前沿物理研究对绝大多数人来说可能是空中楼阁,距离我们实际生活很远,研究这些没有用。 但实际上它是人类前进的一位领航员,能够推动人类的文明进程。可以说基础前沿物理研究是人类发展的灯塔,一直在指示我们前进的正确方向。

【对话科学家】解开宇宙线起源之谜更进一步!

  光明网:我国西藏羊八井ASγ实验是什么时候建立的?

  黄晶:西藏羊八井ASγ实验位于西藏念青唐古拉山脚下,海拔4300米,始建于1989年。经过30多年的不断原创性技术开发,我们取得了一系列国际领先的研究成果,目前已成为国际上享有盛誉的综合型宇宙线阵列观测实验。

  光明网:西藏羊八井ASγ实验在宇宙线研究方面有什么优势?

  黄晶:首先是探测技术的创新优势。ASγ实验创新性地开发了地下水切伦科夫缪子探测器技术,它是国际上第一个能够做到准确测量高能MUON数目,利用MUON数目这个参量鉴别宇宙射线和伽马射线,然后排除宇宙射线背景,挑出纯的伽马射线。这种创新型的缪子探测技术保证了我们实验的国际领先地位,同时ASγ研究内容也是其他实验所未触及的领域,这样也保证了我们相应研究成果的国际领先性。其次,西藏地区的高海拔地理优势也是宇宙线研究非常重要的基础。

【对话科学家】解开宇宙线起源之谜更进一步!

  光明网:这次发布的两项成果,与之前发现的γ射线什么不同?为什么说是朝着解开高能宇宙线起源的世纪之谜迈出的重要一步?

  黄晶:2019 年7 月发现的γ射线,最高能量达450TeV,来自蟹状星云方向,其起源被确认为脉冲星对电子加速,进而与周围宇宙微波背景辐射光子发生“逆康普顿散射”的结果。所以,蟹状星云被认为是典型的“电子源”(轻子源)。而本次观测到的γ射线,则被确认是起源于能量高达PeV的“宇宙线源”,从而首次确认了银河系中确实存在PeV宇宙线加速器。所以,它是朝着解开高能宇宙线起源的世纪之谜迈出的重要一步。

  光明网:宇宙线已经发现100 多年,还有哪些未解之谜?

  黄晶:宇宙线已经发现100 多年,未解之谜还有很多,比如最高能量的宇宙线到底是起源哪些天体现象,这些天体现象又是怎样将宇宙线加速到如此之高的能量,及加速过程机制到底是怎样的等等,这些研究是对探索宇宙、人类文明进步过程起到促进作用。

  光明网:什么是PeVatron?

  黄晶:PeVatron是能将宇宙线加速到PeV(10的15次方电子伏特)能量的天体源被称为拍电子伏特宇宙线加速器(简称“PeVatron”)。

  光明网:判断一个天体源是否是宇宙线PeVatron,有哪些依据?

  黄晶:判断一个天体源是否是宇宙线“PeVatron”主要有三条判据:

  1)该天体源发出的伽马射线能量超过100 TeV;

  2)伽马射线发射区与分子云的位置一致;

  3)能够排除超高能伽马射线产生于脉冲星及其风云高能电子的可能性, 即排除“轻子起源”。

【对话科学家】解开宇宙线起源之谜更进一步!

  此前,世界上还没有任何一个实验组找到同时满足以上三个条件的天体。2021年3月2日,我们ASγ实验组发现的SNR G106.3+2.7是银河系中目前最强的一个候选“拍电子伏特宇宙线加速器”(“PeVatron”)。它的发现为解开超高能宇宙射线的起源之谜打开了重要窗口。

  出品:光明网科普事业部

  监制:战 钊

  策划:宋雅娟

  采访:肖春芳、张梦凡蔡 琳

  制作:蔡 琳、肖春芳

[ 责编:张蕃 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 西藏首位藏族造血干细胞捐献者成功捐献

  • 武汉:参观红色地标 传承红色文化

独家策划

推荐阅读
截至今年3月份,天津累计建成5G基站超过2.5万个,基本实现全市城镇区域及重点行业应用区域室外连续覆盖,为推动5G规模化应用提供坚实基础设施支撑。
2021-05-14 15:09
南极天文望远镜、空间引力波探测装置、极大规模集成电路制造装备、光刻机……这一系列关键装备的加工制造,都需要依靠超高精度的测量仪器对大量光学元件的各项参数进行测量。
2021-05-14 15:08
近年来,天津港还大力推进港口“单一窗口”和“一站式”服务平台建设,全面提升物流便利化水平。
2021-05-14 14:59
近日,第二十二届中国专利奖预获奖结果出炉,中兴通讯的一项专利《一种测量参考信号的信令配置系统及方法》荣获中国专利金奖。
2021-05-14 14:39
推进城市数字化转型,上海11家试点医疗机构正在实现——便捷就医“七场景”。
2021-05-14 11:39
互联网企业不仅提供党史学习教育平台,让年轻人一展身手,也通过组织创作和推动创新,引流更多用户,传播红色文化。
2021-05-14 11:29
中国石油集团经济技术研究院研究员杨艳表示,此次氢能热源自应用侧,自下而上推动,有广泛的应用场景、政策目标和国际关注。
2021-05-14 11:22
在支持基础设施互联互通建设方面,国开行重点支持粤港澳大湾区建设世界级机场群,助推大湾区机场错位发展和良性互动。
2021-05-14 10:52
记者从中国航天科工集团二院获悉,由该院自主研发的我国首条小卫星智能生产线,5月13日迎来了重要的里程碑时刻——首颗卫星下线。
2021-05-14 10:47
从古细菌中进行从头开始的基因组重建,揭示了人类肠道微生物组信息变化。
2021-05-14 10:45
新的烈性疾病不断出现,完全攻克这类疾病还需要相当长的时间,其中一个最主要的原因,就是缺乏有效的动物模型。
2021-05-14 10:43
5月8日在广东佛山召开的“首届海峡两岸暨港澳海洋水产养殖技术高峰会”上,由广东省市场监督管理局组织编写的《海洋经济产业专利导航报告》公布了。
2021-05-14 10:41
《科学结构图谱2021》形成了全球视野的科学结构图谱,可视化地展现了2012年至2017年的科学研究宏观结构及其内在关系。
2021-05-14 10:41
成立于2004年的药谷平台,是张江最老牌也是国内成立最早的国家级生物医药孵化器和公共实验平台。
2021-05-14 10:40
《广东省人民政府关于加快数字化发展的意见》围绕数字生态、数字经济、数字社会、数字政府,分类提出8点共33项具体措施,全面推进广东经济社会各领域数字化转型发展。
2021-05-14 10:27
截至4月底,北京已开通5G基站5.64万个,在全国城市中名列前茅,实现了对首都功能核心区、城市副中心、CBD、奥林匹克中心区等重点功能区5G网络全覆盖。
2021-05-14 10:15
5月15日是我国第二十八个“全国防治碘缺乏病日”,今年的宣传主题为“科学补碘,健康一生”。
2021-05-13 15:26
江苏省常州市首个校企共建智慧酒店产教融合平台,5月6日在溧阳市正式揭牌。这是常州工程职业技术学院在加快高素质技能人才培养与提前服务行业能力上,所搭建的一个深化校企合作的重要平台。
2021-05-13 15:25
海洋环境具有高盐度、高压、低温和寡营养等不同于陆地环境的特点,孕育了富饶的生物资源。海洋生物在新陈代谢、生存方式、信息传递和适应机制等方面具有显著的特点。
2021-05-13 15:24
子是人们日常生活中熟悉的“陌生人”:每个电子携带一份内禀的电荷,其集体运动产生的电流驱动了照明、晶体管以及各种电子设备的运行。然而作为一种基本粒子,电子还携带另外一个基本物理量,即自旋。如何操控自旋,研制速度更快、能耗更低的电子器件是自上世纪90年代以来科学和工程领域孜孜追求的目标。
2021-05-13 15:23
加载更多